47 research outputs found

    Query-to-Communication Lifting for BPP

    Full text link
    For any nn-bit boolean function ff, we show that the randomized communication complexity of the composed function f∘gnf\circ g^n, where gg is an index gadget, is characterized by the randomized decision tree complexity of ff. In particular, this means that many query complexity separations involving randomized models (e.g., classical vs. quantum) automatically imply analogous separations in communication complexity.Comment: 21 page

    Locally checkable proofs

    Get PDF
    This work studies decision problems from the perspective of nondeterministic distributed algorithms. For a yes-instance there must exist a proof that can be verified with a distributed algorithm: all nodes must accept a valid proof, and at least one node must reject an invalid proof. We focus on locally checkable proofs that can be verified with a constant-time distributed algorithm. For example, it is easy to prove that a graph is bipartite: the locally checkable proof gives a 2-colouring of the graph, which only takes 1 bit per node. However, it is more difficult to prove that a graph is not bipartite—it turns out that any locally checkable proof requires Ω(log n) bits per node. In this work we classify graph problems according to their local proof complexity, i.e., how many bits per node are needed in a locally checkable proof. We establish tight or near-tight results for classical graph properties such as the chromatic number. We show that the proof complexities form a natural hierarchy of complexity classes: for many classical graph problems, the proof complexity is either 0, Θ(1), Θ(log n), or poly(n) bits per node. Among the most difficult graph properties are symmetric graphs, which require Ω(n2) bits per node, and non-3-colourable graphs, which require Ω(n2/log n) bits per node—any pure graph property admits a trivial proof of size O(n2).Peer reviewe

    Distributed Detection of Cycles

    Full text link
    Distributed property testing in networks has been introduced by Brakerski and Patt-Shamir (2011), with the objective of detecting the presence of large dense sub-networks in a distributed manner. Recently, Censor-Hillel et al. (2016) have shown how to detect 3-cycles in a constant number of rounds by a distributed algorithm. In a follow up work, Fraigniaud et al. (2016) have shown how to detect 4-cycles in a constant number of rounds as well. However, the techniques in these latter works were shown not to generalize to larger cycles CkC_k with k≥5k\geq 5. In this paper, we completely settle the problem of cycle detection, by establishing the following result. For every k≥3k\geq 3, there exists a distributed property testing algorithm for CkC_k-freeness, performing in a constant number of rounds. All these results hold in the classical CONGEST model for distributed network computing. Our algorithm is 1-sided error. Its round-complexity is O(1/ϵ)O(1/\epsilon) where ϵ∈(0,1)\epsilon\in(0,1) is the property testing parameter measuring the gap between legal and illegal instances

    Non-Local Probes Do Not Help with Graph Problems

    Full text link
    This work bridges the gap between distributed and centralised models of computing in the context of sublinear-time graph algorithms. A priori, typical centralised models of computing (e.g., parallel decision trees or centralised local algorithms) seem to be much more powerful than distributed message-passing algorithms: centralised algorithms can directly probe any part of the input, while in distributed algorithms nodes can only communicate with their immediate neighbours. We show that for a large class of graph problems, this extra freedom does not help centralised algorithms at all: for example, efficient stateless deterministic centralised local algorithms can be simulated with efficient distributed message-passing algorithms. In particular, this enables us to transfer existing lower bound results from distributed algorithms to centralised local algorithms

    Linear-in-Δ\Delta Lower Bounds in the LOCAL Model

    Full text link
    By prior work, there is a distributed algorithm that finds a maximal fractional matching (maximal edge packing) in O(Δ)O(\Delta) rounds, where Δ\Delta is the maximum degree of the graph. We show that this is optimal: there is no distributed algorithm that finds a maximal fractional matching in o(Δ)o(\Delta) rounds. Our work gives the first linear-in-Δ\Delta lower bound for a natural graph problem in the standard model of distributed computing---prior lower bounds for a wide range of graph problems have been at best logarithmic in Δ\Delta.Comment: 1 + 21 pages, 10 figure
    corecore